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Abstract. The n-dimensional Manhattan network Mn—a special case of n-regular digraph—is
formally defined and some of its structural properties are studied. In particular, it is shown that
Mn is a Cayley digraph, which can be seen as a subgroup of the n-dim version of the wallpaper
group pgg. These results induce a useful new presentation of Mn, which can be applied to design a
(shortest-path) local routing algorithm and to study some other metric properties. Also it is shown
that the n-dim Manhattan networks are Hamiltonian and, in the standard case (that is, dimension
two), they can be decomposed in two arc-disjoint Hamiltonian cycles. Finally, some results on the
connectivity and distance-related parameters of Mn, such as the distribution of the node distances
and the diameter are presented.
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1. Introduction. The study of a class of toroidal directed networks, commonly
known in the literature as Manhattan (Street) Networks, has received significant at-
tention since they were introduced independtly (in different contexts) by Morillo et
al. [19] and Maxemchuk [17] as an unidirectional regular mesh structure resembling
locally the topology of the avenues and streets of Manhattan (or l’Eixample in down-
town Barcelona).

In [19] the networks were related to plane tessellations, and this association facil-
itates the study of some metric properties. Most of the work on Manhattan networks
has been devoted to the computation of the average distance [16] and the generation
of routing schemes [17] for the 2-dimensional case. These results have been usually
inspired by conjectures supported by computer simulations. The study of spanning
trees [6] in a Manhattan network has allowed the computation of the diameter and the
design of a multi-port broadcasting algorithm. More recently, Varvarigos in [22] eval-
uated the mean internodal distance of such a network, and provided also a shortest
path routing algorithm and two edge-disjoint Hamiltonian cycles in the 2-dimensional
case N ×N . The multidimensional natural extension of the Manhattan networks has
been considered by Banerjee et al., see [1, 2], with the determination of the average
distance of a 3-dimensional Manhattan network, and a conjecture for higher dimen-
sions. Chung and Agrawal [7] studied the diameter and provided routing schemes for
a 3-dimensional construction based on 2-dimensional Manhattan networks, although
the proposed resulting network is not strictly a 3-dimensional Manhattan network.

In this paper we give a formal definition of an n-dimensional Manhattan network
Mn, together with its main properties, and provide analytical determinations of some
of its distance-related parameters, such as the diameter. As a useful result, it is shown
that Mn is a Cayley digraph. This fact allows us to introduce a new presentation
of Mn, which can be applied to prove a number of results, such as the design of
a (shortest-path) local routing algorithm. We also give some details on the cycle
structure and a proof of the Hamiltonicity of these digraphs. Finally, some results on
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1–3, Mòdul C3, Campus Nord, 08034 Barcelona, Catalonia, Spain (comellas@ma4.upc.edu,
cdalfo@ma4.upc.edu, fiol@ma4.upc.edu).

1



2 F. COMELLAS, C. DALFÓ, M.A. FIOL

the connectivity and distance-related parameters of Mn, such as the distribution of
the node distances and the diameter are presented.

1.1. Some notation on digraphs. Recall that a digraph G = (V,A) consists
of a set of vertices V , together with a set of arcs A, which can be seen as ordered
pairs of vertices, A ⊂ V × V = {(u, v) : u, v ∈ V }. An arc (u, v) is usually depicted
as an arrow with initial vertex u and terminal vertex v; that is, u → v. The indegree
δ−(u) (respectively, outdegree δ+(u)) of a vertex u is the number of arcs with initial
(respectively, terminal) vertex u. Then G is δ-regular when δ−(u) = δ+(u) = δ for
every vertex u ∈ V . Given a digraph G = (V,A), its converse digraph G = (V,A) is
obtained from G by reversing all the orientations of the arcs in A; that is, (u, v) ∈ A
if and only if (v, u) ∈ A.

Given a group Γ with (finite) generating set ∆, the Cayley digraph Cay(Γ,∆) has
vertexs representing the elements of Γ, and arcs of the form (g, h∂) where g, h ∈ Γ
and ∂ ∈ ∆. The Cayley digraph Cay(Γ,∆) is a vertex-transitive strongly connected
regular digraph.

The well known Sabidussi’s characterization result [20] states that a digraph is a
Cayley digraph (for some pair Γ, ∆) if and only if its automorphism group contains
a regular subgroup.

An homomorphism Ψ from a digraph G to a digraph H is a mapping from the
vertex set of G to the vertex set of H preserving adjacencies; that is, if (u, v) is
an arc of G, then (Ψ(u),Ψ(v)) is an arc of H. Moreover, if both digraphs are arc-
colored (all arcs with the same initial or terminal vertex receive different colors) and
Ψ preserves the colors, we say that Ψ is a colored homomorphism or simply that it is
color-preserving.

Other standard definitions and basic results about graphs and digraphs not re-
called here can be found in [3, 5].

2. The Multidimensional Manhattan Network. Recall that the standard
Manhattan (Street) Network M(N1, N2) was defined as a 2-regular digraph in the
following way. Every vertex is represented by a pair of integers u = (u1, u2), with
0 ≤ ui ≤ Ni, for some even integers Ni, i = 1, 2 and vertex u has two outgoing arcs:
one horizontal (u1±1, u2); and the other vertical (u1, u2±1) (where the sign depends
on the parity of the other component and arithmetic must be understood modulo Ni).
More precisely, a horizontal arc points to est (respectively, west) when it is on an even
(respectively, odd) row. Similarly, a vertical arc points to north (respectively, south)
if it is on an even (respectively, odd) column.

Locally the structure is as shown in Fig. 2.1, and corresponds to a standard pat-
tern for the allowed traffic directions in some neighborhoods of our modern cities,
like New York or Barcelona, with their system of straight orthogonal streets. In most
of the papers [17, 6, 8] the above mentioned toroidal version of M2 was considered,
whereas in [19] the aim was to construct the locally-Manhattan network with maxi-
mum number of vertices for a given diameter.

A formal definition of the toroidal version, which applies also for the n-dimensional
case, is the following:

Definition 2.1. Given n even positive integers N1, N2, . . . , Nn, the n-dim Man-
hattan network Mn = M(N1, N2, . . . , Nn) is a digraph with vertex set V (Mn) =
ZN1 × ZN2 × . . . × ZNn . Thus, each of its vertices is represented by an n-vector
u = (u1, u2, . . . , un), with 0 ≤ ui ≤ Ni − 1, i = 1, 2, . . . , n. The arc set A(Mn) is
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Fig. 2.1. The local pattern of a Manhattan network and two real-life examples: Orthogonal
streets of Manhattan and l’Eixample in Barcelona.

defined by the following adjacencies (here called i-arcs):

(u1, . . . , ui, . . . , un) → (u1, . . . , ui + (−1)
P

j !=i uj , . . . , un) (1 ≤ i ≤ n).(2.1)

Therefore, Mn is a n-regular digraph on N =
∏n

i=1 Ni vertices.
In particular notice that, when Ni = 2, 1 ≤ i ≤ n, we always have (−1)

P
j !=i uj = 1.

Hence, in this case the n-dimensional Manhattan network is isomorphic to the sym-
metric digraph Q∗

n, with Qn being the hypercube of dimension n or n-cube.
Some other simple consequences of the definition of Mn are presented in the

following lemma:
Lemma 2.2. Every n-dimensional Manhattan network Mn = M(N1, N2, . . . , Nn)

satisfy the following properties:
(a) Given any permutation σ of the numbers N1, N2, . . . , Nn, say P1, P2, . . . , Pn,

the Manhattan networks Mn and Mσ
n = M(P1, P2, . . . , Pn) are isomorphic

digraphs.
(b) Mn is isomorphic to its converse Mn.
(c) For any n−k fixed integers xi ∈ ZNi , i = k+1, k+2, . . . , n, the subdigraph of

Mn induced by the vertices of the form (u1, u2, . . . , uk, xk+1, . . . , xn) is either
the k-dim Manhattan network Mk = M(N1, N2, . . . , Nk) or its converse Mk,
depending on whether α :=

∑n
i=k+1 xn is even or odd, respectively.

(d) Mn is both a 2n-partite and bipartite digraph.
(e) There exists an homomorphism from Mn to the symmetric digraph of the

hypercube Q∗
n.

Proof. The result in (a) is clear with σ acting on the (components of the) vertices
of Mn. To prove (b), note that in the converse digraph Mn, the adjacencies are just

(u1, . . . , ui, . . . , un) → (u1, . . . , ui − (−1)
P

j !=i uj , . . . , un) (1 ≤ i ≤ n).(2.2)

Hence, it is readily checked that the mapping ϕ : V (Mn) → V (Mn) defined by
ϕ(u) = −u is the required isomorphism. The result in (c) follows from the “con-
verse adjacencies” in (2.2) and the fact that (−1)

Pk
j=1,j !=i ui+α = ±(−1)

Pk
j=1,j !=i ui

depending on the parity of α. Moreover, (d) holds since Mn is a 2n-partite digraph
with independent sets Vb, where b = (b1, b2, . . . , bn) is an n-binary string. A vertex
u = (u1, u2, ..., un) belongs to Vb when the parities of ui and bi coincide for every
1 ≤ i ≤ n. In particular, Mn is bipartite with stable vertex sets V0 and V1 constituted
by the vertices whose corresponding binary string represents an even or odd number,
respectively. Finally, the claimed homomorphism in (e) is simply

(u1, u2, . . . , un) '→ (π(u1),π(u2), . . . ,π(un)),
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Fig. 2.2. An alternative definition of the local structure of a 2-dim Manhattan network seen as
a 4-partite digraph. (All vertices in Vj are denoted by j.)

where the parity function π takes the expected values in {0, 1}.
Concerning property (d), let us mention that, in [19], the local structure of an

standard (2-dim) Manhattan network was introduced as a type of 4-partite digraph
in the following way: Let a digraph G = (V,A) have order N = |V | a multiple of 4,
with V = V0 ∪ V1 ∪ V2 ∪ V3, where

Vj = {i : 0 ≤ i ≤ N − 1; i ≡ j mod4} (0 ≤ j ≤ 3),(2.3)

with every vertex i being adjacent to the vertices i+ aj , i+ bj modN , for some given
integers aj ≡ 3, and bj ≡ 1 mod 4 satisfying

a0 + a2 ≡ −a1 − a3 ≡ b0 + b2 ≡ −b1 − b3 (modN).

See Fig. 2.2 to check that the above conditions impose a Manhattan local structure.

2.1. The line digraph structure. Here we show that the standard Manhattan
network, which is the two-dimensional case M2, has the structure of a line digraph.
To the knowledge of the authors, this relevant fact had not been noticed before. As a
consequence, M2 can be seen as the line digraph of a digraph M ′

2 whose order is one
half of the order of M2 and, what is more important, some properties of M2 can be
derived from those of M ′

2.
First, recall that, given a digraph G = (V,A) with n vertices and m arcs, its line

digraph LG = (VL, AL) has vertices representing the arcs of G; so that we identify
each vertex ij ∈ VL with the arc (i, j) ∈ A; and its adjacencies are naturally induced
by the arc adjacencies in G. More precisely, vertex ij ∈ VL is adjacent to vertex jk
since the arc (i, j) ∈ A has the same terminal vertex as the initial vertex of (j, k).
Thus, the order of LG equals the size m of G and, if G is δ-regular, so is LG and it
has δn arcs. Also, it is known that if G is different from a (directed) cycle and has
diameter D, then its line digraph LG has diameter D + 1; see [10].

Lemma 2.3. For any N1, N2, the 2-dimensional Manhattan network M2 is a line
digraph.

Proof. It suffices to check Heuchenne’s condition [15], which says that a digraph is
a line digraph if and only if it has no multiple arc and the out-neighbor (in-neighbor)
sets of any two of its vertices are either identical or disjoint. With this aim, assume
that two different vertices, u = (u1, u2) and v = (v1, v2), have a common out-neighbor
w. Then we claim that the arcs u → w and v → w must be of different type; that is,
one 1-arc and the other a 2-arc. Otherwise, if both were 1-arcs, say, we would have

w = (u1 + (−1)u2 , u2) = (v1 + (−1)v2 , v2),
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which leads to u2 = v2 and u1 = v1, so that u = v against the hypothesis. The same
contradiction is reached if we suppose that both adjacencies are 2-arcs. Thus assume,
without lose of generality, that u → w is a 1-arc and v → w is a 2-arc. Then,

w = (u1 + (−1)u2 , u2) = (v1, v2 + (−1)v1),

whence

u1 = v1 − (−1)u2 = v1 − (−1)v2+(−1)v1 = v1 + (−1)v2 ,

v2 = u2 − (−1)v1 = u2 − (−1)u1+(−1)u2 = u2 + (−1)u1 ,

which imply the existence of another common out-neighbor w′ such that u → w′ is
a 2-arc and v → w′ is a 1-arc:

w′ = (u1, u2 + (−1)u1) = (v1 + (−1)v2 , v2),

and we get the claimed result.
Summarizing, we have seen that two different vertices u,v, have the same out-

neighborhood if and only if they are of the form

u = (a, b), v = (a + (−1)b, b + (−1)a),

for some integers a ∈ ZN1 , b ∈ ZN2 . Then, according to the parity (equal “●” or
distinct “■”) of a, b, we have the two possible situations shown in Fig. 2.3, on the left.
From this, notice that the digraph G where M2 comes from (that is, M2 = LG) is
also bipartite, with independent sets {“●”} and {“■”}. In fact, the infinite pattern
corresponds to another planar crystallographic group; namely, the one denoted by p4.

u=(��,��)a�b

v=( 1, 1)a+���b+

( 1,��)a+���b

(��, 1)a�b+

u=(��,��)a�b

v=( , 1)a-1�b+ (��, 1)a�b+

( 1,��)a-���b

Fig. 2.3. The local structure of a 2-dim Manhattan network (slim lines and white vertices) and
the digraph (thick lines and black vertices) where it comes from as a line digraph.

It is worthy noting that the property of being line digraphs is not shared, in
general, by the Manhattan networks with dimension greater than two. For instance,
M(8, 6, 10) does not satisfy Heuchenne’s condition since the outneighborhoods
Γ+(1, 1, 5) = {(2, 5, 5), (7, 2, 5), (7, 5, 6)} and Γ+(6, 1, 4) = {(2, 5, 5), (2, 2, 6), (7, 5, 6)}
are neither equal nor disjoint.

Two simple consequences of Lemma 2.3 are the following: First, M2 is Hamilto-
nian, as it is the line digraph of a 2-regular digraph which is Eulerian [5]. In fact,
in Section 4 we show that the Hamiltonian property is shared by all n-dimensional
Manhattan networks; Second, the results in [11] imply that the spectrum of M2 =
M(N1, N2) has the eigenvalue 0 with (geometric) multiplicity at least N1N2/2.
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3. The Colored Automorphism Group. Here we investigate the symmetries
of the Manhattan networks.

Theorem 3.1. The n-dim Manhattan network Mn is the Cayley digraph of the
group Γ with presentation

Γ = 〈a1, a2, . . . , an | aNi
i = (aiaj)2 = (aia

−1
j )2 = 1, i, j = 1, . . . , n〉.(3.1)

Proof. Let us show that the mappings φj , 1 ≤ j ≤ n, defined by

φj(u1, . . . , uj , . . . , un) = (−u1, . . . ,−uj−1, uj + 1,−uj+1, . . . ,−un).(3.2)

are all isomorphisms of Mn mapping i-arcs into i-arcs. Indeed, let γ+
i u denote the

vertex adjacent from vertex u = (u1, . . . , un) through the i-arc. Then, assuming first
that j ,= i, say j < i,

φj(γ+
i u) = φj(u1, . . . , uj , . . . , ui + (−1)

P
k !=i uk , . . . , un)

= (−u1, . . . , uj + 1, . . . ,−ui + (−1)1+
P

k !=i uk , . . . ,−un)
= γ+

i (−u1, . . . , uj + 1, . . . ,−ui, . . . ,−un)
= γ+

i φj(u).

Otherwise, if j = i, we have:

φi(γ+
i u) = φi(u1, . . . , ui + (−1)

P
k !=i uk , . . . , un)

= (−u1, . . . , ui + 1 + (−1)
P

k !=i uk , . . . ,−un)
= γ+

i (−u1, . . . , ui + 1, . . . ,−un)
= γ+

i φi(u).

Therefore, the mappings φj , 1 ≤ j ≤ n, are all color-preserving automorphisms of Mn.
Let us now show that the permutation group 〈φi | 1 ≤ i ≤ n〉 acts transitively on the
set Z × Z× n· · · ×Z (and hence, also on the vertex set of Mn = M(N1, N2, . . . , Nn)).
With this aim, it is enough to show that any vertex u = (u1, u2, . . . , un) can be
mapped into vertex 0 = (0, 0, . . . , 0). Let us first distinguish two cases depending on
the sign of un (the supraindexes of the isomorphisms indicate how many times they
are applied):

• un < 0:

(u1, u2, . . . , un)
φ|un|

n−→ (±u1,±u2, . . . , 0);

• un > 0:

(u1, . . . , ui, . . . , un) φi−→ (−u1, . . . , ui + 1, . . . ,−un)
φun

n−→ (±u1, . . . ,±(ui + 1), . . . , 0),

where i < n and, in both cases, the sign in ± depends on the parity of un.
Then, by applying the same procedure n − 1 times, we obtain a vertex of the

form (v1, 0, . . . , 0). From this vertex, the desired path is obtained by taking into
consideration the following cases. Let k be a nonnegative integer:
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Fig. 3.1. Standard representations of the Manhattan network M(8, 2) and the Cayley digraph
of D8 (each line stands for two opposite arcs).

• v1 = −k:

(−k, 0, . . .)
φk

1−→ (0, 0, . . .).

• v1 = 2k + 1:

(2k + 1, 0, . . .) φ2−→ (−2k − 1, 1, . . .)
φ2k+1

1−→ (0,−1, . . .) φ2−→ (0, 0, . . .).

• v1 = 2k:

(2k, 0, . . .) φ2−→ (−2k, 1, . . .)
φ2k

1−→ (0, 1, . . .) φ1−→ (1,−1, . . .)
φ2−→ (−1, 0, . . .) φ1−→ (0, 0, . . .).

Thus, the group Γ = 〈φ1, . . . ,φn〉 is a regular subgroup of the automorphism
group Aut Mn and Mn is a Cayley digraph. Concerning the structure of Γ, let us
check only the second defining relation in (3.1), as the others are proved similarly.

(φiφj)2(u) = φiφjφiφj(u1, . . . , ui, . . . , uj , . . . , un)
= φiφjφi(−u1, . . . ,−ui, . . . , uj + 1, . . . ,−un)
= φiφj(u1, . . . ,−ui + 1, . . . ,−uj − 1, . . . , un)
= φi(−u1, . . . , ui − 1, . . . ,−uj , . . . ,−un)
= (u1, . . . , ui, . . . , uj , . . . , un) = u.

This structural result has some appealing consequences, the most evident being
the following corollary.

Corollary 3.2. The n-dim Manhattan network Mn is a vertex-symmetric (but
not necessarily arc-symmetric) digraph.

The reader familiar with group theory will have already noted that, in the two-
dimensional case, the presentation in (3.1) without the first generating relations aN1

1 =
aN2
2 = 1 corresponds to the (plane) crystallographic group pgg [9]. Consequently, we

have the following result:
Corollary 3.3. The underlying Cayley digraph of the 2-dim Manhattan network

M2, with respect to the arc-coloring defined in (2.1) is a (normal) subgroup of the
crystallographic group pgg.
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In particular, for N1 = n, N2 = 2, we get the dihedral group Dn (the symmetry
group in 2D of a n-side regular polygon). See Fig. 3.1 for the standard drawing of
M(8, 2) and the Cayley digraph of D8.

3.1. An alternative definition. The above results imply an alternative pre-
sentation of the Manhattan networks.

Definition 3.4. The vertex set of Mn = M(N1, N2, . . . , Nn) is, as above,
ZN1 × · · ·× ZNn and the (i-)arcs are now:

(u1, . . . , ui, . . . , un) → (−u1, . . . ,−ui−1, ui + 1,−ui+1, . . . ,−un) (1 ≤ i ≤ n).
(3.3)

Lemma 3.5. The graphs defined by (2.1) and (3.3) are isomorphic.
Proof. We introduce the isomorphism from the standard definition to the new

presentation as follows (1 ≤ i, j ≤ n):

Ψ(u1, . . . , ui, . . . , un) = ((−1)
P

j !=1 uj u1, . . . , (−1)
P

j !=i uj ui, . . . , (−1)
P

j !=n uj un).(3.4)

This application preserves the adjacencies and their “colors”. Indeed,

Ψ(u1, . . . , ui, . . . , un) = ((−1)
P

j !=1 uj u1, . . . , (−1)
P

j !=i uj ui, . . . , (−1)
P

j !=n uj un) →
(−(−1)

P
j !=1 uj u1, . . . , (−1)

P
j !=i uj ui + 1, . . . ,−(−1)

P
j !=n uj un) =

((−1)
P

j !=1 uj+(−1)
P

j !=i uj
u1, . . . , (−1)

P
j !=i uj (ui + (−1)

P
j !=i uj ), . . . ,

(−1)
P

j !=n uj+(−1)
P

j !=i uj
un) = Ψ(u1, . . . , ui + (−1)

P
j !=i uj , . . . , un).

An an example, Fig. 3.2 shows both, the standard definition and the new presen-
tation of M(6, 4). (The torus surface is drawn as usual, where the directed dashed
lines represent the identification of parallel sides of the rectangle.)

(0,1) (1,1)

(0,0) (1,0) (2,0) (3,0)

(2,1) (3,1)

(0,2) (1,2) (2,2) (3,2)

(0,3) (1,3) (2,3) (3,3)

(4,1) (5,1)

(4,0) (5,0)

(4,2) (5,2)

(4,3) (5,3) (0,3) (5,1) (4,3) (3,1)

(0,2) (1,2) (2,2) (3,2)

(0,1) (5,3) (4,1) (3,3)

(0,0) (1,0) (2,0) (3,0)

(2,3) (1,1)

(4,2) (5,2)

(2,1) (1,3)

(4,0) (5,0)

Fig. 3.2. The vertices with their standard labels and with the labels induced by the applications
φj in a Manhattan network M(6, 4).

As suggested by this example, it can be readily checked that Ψ is involutive,
and hence the mapping from the alternative definition to the standard one is simply
Ψ−1 = Ψ.

3.2. The Metric Parameters. In the 2-dimensional case, the diameter of the
Manhattan network M2 was first explicitly given in [6] by using spanning trees, al-
though it follows easily from the results in [22] where the mean distance was computed.
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The same result was proved in [8] from the comparison of the distance distribution in
M2 and the corresponding undirected toroidal mesh. In the last two papers, the dis-
tribution of vertices at each distance was also given, which allows closed formulas for
the mean distance. In particular, for large values of N1 and N2, the number of vertices
at distance k ≥ 4 from a given vertex, say 0, of M2(N1, N2), is 4(k − 1) (see Fig. 3.3
for the cases k = 7, 8). This was also noted in [19] for the (not necessarily toroidal)
2-dim Manhattan network with vertex set as in (2.3). Besides, in the same paper it
was shown that, considering the digraph as bipartite, if it has diameter D(> 4), then
its order is upper bounded for the following Moore-like bound (see [18]):

N(2, D) =
{

2(D − 1)2, D odd,
2[(D − 1)2 + 1], D even.

In fact, if we do not impose the “toroidal closure” of the network, the above values can
be attained since the corresponding tiles (that is, the sets of unit squares associated
to the vertices which are at distance ≤ D from 0) tessellates periodically the plane
(see Fig. 3.3). More precisely, when D is odd, the “steps” for attaining the maximum
order are, for instance,

a0 = 3, a1 = 2D − 3, a2 = −2D + 1, a3 = −1;
b0 = 1, b1 = −3, a2 = −2D + 3, a3 = 2D − 1;

whereas, for D even, we have:

a0 = −3, a1 = 2D + 1, a2 = −2D + 1, a3 = 1;
b0 = −1, b1 = 3, a2 = −2D − 1, a3 = 2D − 1.

As the reader will have already noted, in the toroidal case studied here, and for a
given number of vertices N = N1N2, the diameter is much greater than the obtained
above. In this case we have the following known result, which we use afterwards to
study the n-dim case:

Theorem 3.6. The diameter of the Manhattan network M(N1, N2) is

(a) D =
N1

2
+

N2

2
+ 1, if N1 ≡ N2 ≡ 0 (mod 4);

(b) D =
N1

2
+

N2

2
, otherwise.

Proof. For completeness, we here give a proof based on our alternative presen-
tation in Definition 3.4. Let α, β be some even and odd integers, respectively, in
[0, Ni/2 − 1], i = 1, 2. Similarly, let γ be any integer in the interval [0, Ni/2 − 1].
Because of the symmetry of the digraph, it suffices to consider a path from a generic
vertex u = (u1, u2) to vertex 0 = (0, 0), whose length never exceeds the above values
for D. With this aim, we first consider the cases where some ui equals ±Ni/2 (the
sign is irrelevant since we are in ZNi with Ni even). Here the arrows and the numbers
above them represent the followed paths and their lengths.

(i) u1 = N1/2, u2 = N2/2:

(N1/2, N2/2)
+N1/2−→ (0, N2/2)

+N2/2−→ (0, 0).

(ii) u1 = N1/2 (even), u2 = −γ:

(N1/2,−γ)
+N1/2−→ (0,−γ) +γ−→ (0, 0).
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(iii) u1 = N1/2 (even), u2 = α:

(N1/2,α) +1−→ (N1/2 + 1,−α) +α−→ (N1/2 + 1, 0)
+N1/2−1−→ (0, 0).

(iv) u1 = N1/2 (even), u2 = β:

(N1/2,β)
+N1/2−→ (0,β) +1−→ (1,−β) +β−→ (−1, 0) +1−→ (0, 0).

(v) u1 = N1/2 (odd), u2 = γ:

(N1/2, γ)
+N1/2−→ (0,−γ) +γ−→ (0, 0).

(vi) u1 = N1/2 (odd), u2 = −γ:

(N1/2,−γ) +γ−→ (N1/2, 0)
+N1/2−→ (0, 0).

Note that all the above paths have length dist(u,0) ≤ N1/2 + N2/2, except in case
(iv) where we have

dist(u,0) =
N1

2
+ β + 2 ≤ N1

2
+

N2

2
+ 1,(3.5)

and equality is attained when β = N2/2 − 1 or, in the symmetric case, u1 = β =
N1/2− 1 and u2 = N2/2. Note that, in both cases, N1/2 and N2/2 must be even, so
that we are in case (a) of the theorem. Besides, when β = N2/2− 2, Eq. (3.5) gives
dist(u,0) = N1/2 + N2/2 (for N1/2 even and N2/2 odd); and the same holds in the
symmetric case u1 = β = N1/2− 2, u2 = N2/2 (for N1/2 odd and N2/2 even). Such
cases correspond to case (b) in the statement of the theorem.

Moreover, when neither of the entries ui equals Ni/2, we need to consider the
following cases:

(1) u1 = −α1, u2 = −α2:

(−α1,−α2)
+α1−→ (0,−α2)

+α2−→ (0, 0).

(2) u1 = −α, u2 = −β:

(−α,−β) +α−→ (0,−β) +β−→ (0, 0).

(3) u1 = −β1, u2 = −β2:

(−β1,−β2)
+β1−→ (0,β2)

+1−→ (1,−β2)
+β2−→ (−1, 0) +1−→ (0, 0).

(4) u1 = −α, u2 = β:

(−α, β) +α−→ (0,β) +1−→ (1,−β) +β−→ (−1, 0) +1−→ (0, 0).

(5) u1 = −β, u2 = α:

(−β, α) +β−→ (0,−α) +α−→ (0, 0).

(6) u1 = −α1, u2 = α2:

(−α1,α2)
+1−→ (−α1 + 1,−α2)

+α2−→ (−α1 + 1, 0) +α1−1−→ (0, 0).
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(7) u1 = −β1, u2 = β2:

(−β1,β2)
+β1−→ (0,−β2)

+β2−→ (0, 0).

(8a) u1 = α1 < N1/2− 1, u2 = α2:

(α1,α2)
+1−→ (α1 + 1,−α2)

+α2−→ (α1 + 1, 0)
+1−→ (−α1 − 1, 1) +α1+1−→ (0,−1) +1−→ (0, 0).

(8b) u1 = α1 = N1/2− 1, u2 = α2:

(α1,α2)
+1−→ (α1 + 1,−α2) = (N1/2,−α2)

+α2−→ (N1/2, 0)
+N1/2−→ (0, 0).

(9) u1 = α, u2 = β:

(α, β) +1−→ (α + 1,−β) +β−→ (−α− 1, 0) α+1−→ (0, 0).

(10) u1 = β1, u2 = β2:

(β1,β2)
+1−→ (β1 + 1,−β2)

+β2−→ (−β1 − 1, 0) +β1+1−→ (0, 0).

Observe again that all the above paths have length dist(u,0) < N1/2 + N2/2, except
in the cases (4), (8b) and (9) where we have

dist(u,0) =
N1

2
+

N2

2
,

for different parities of N1/2 and N2/2. For instance, in case (8b) the maximum is
attained when α2 = N1/2− 1; that is, for a vertex of the form (N1/2− 1, N2/2− 1)
where N1 ≡ N2 ≡ 2 mod 4. (This and all the other vertices at maximum distance are
listed below.) This completes the proof.

Notice that, from the above proof, the vertices at maximum distance from 0 are,
depending on the case (recall that we are using the alternative definition):

(a) N1 ≡ N2 ≡ 0 mod 4:
(iv): (N1/2, N2/2− 1), (N1/2− 1, N2/2);

(b1) N1 ≡ 0, N2 ≡ 2 mod 4:
(i): (N1/2, N2/2),
(iv): (N1/2, N2/2− 2),
(4): (N1/2− 1, N2/2 + 1),
(9): (N1/2− 1, N2/2− 1);

(b2) N1 ≡ 2, N2 ≡ 0 mod 4:
(i): (N1/2, N2/2),
(iv): (N1/2− 2, N2/2),
(4): (N1/2 + 1, N2/2− 1),
(9): (N1/2− 1, N2/2− 1);

(b3) N1 ≡ N2 ≡ 2 mod 4:
(i): (N1/2, N2/2),
(8b): (N1/2− 1, N2/2− 1).
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Fig. 3.3. The vertices at distance 7 (“!”) and at distance 8 (“■”) from vertex (0, 0) (“ ◦ ”),
and the corresponding tessellations.

To derive the diameter of the n-dimensional Manhattan network, it is useful
to introduce the following notation. Given N (even) and 0 ≤ u ≤ N , let ‖u‖N

be the distance between 0 and u in the undirected cycle CN ; that is, ‖u‖N =
min{u (modN),−u (modN)} (so that 0 ≤ ‖u‖N ≤ N/2).

Lemma 3.7. Let us consider the vertices 0 = (0, 0, . . . , 0), u = (u1, . . . , un−1, un)
in Mn = (N1, . . . , Nn−1, Nn), n > 2; and e1 = (1, 0, . . . , 0), u′ = (u1, . . . , un−1) in
Mn−1 = (N1, . . . , Nn−1). Let α = (−1)un . Then,

(a) distMn(u,0) ≥ ∑n
i=1 ‖ui‖Ni ;

(b) distMn(u,0) ≤ distMn−1(αu′,0) + ‖un‖Nn , if un ∈ [Nn/2, Nn];
(c) distMn(u,0) ≤ distMn−1(α(u′ +e1),0)+ ‖un‖Nn +1, if un ∈ [0, Nn/2− 1];

Proof. The inequality in (a) is a direct consequence of the fact that the underlying
graph of Mn is just the direct product of the cycles CNi , 1 ≤ i ≤ Ni.

If Nn/2 ≤ un ≤ Nn, there is a path of length Nn − un = ‖un‖Nn from u to
(αu1, . . . ,αun−1, 0) in Mn. From this vertex, we will need, at most, distMn−1(αu′,0)
steps to reach 0. This proves (b).

Otherwise, when 0 ≤ un ≤ Nn/2 − 1, we go first, in one step, from u to
(u1 + 1,−u2, . . . ,−un−1,−un). Then, from this vertex we have a path of length

un = ‖un‖Nn to (α(u1 +1),−αu2, . . . ,−αun−1, 0), and reasoning as above we get (c).
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As a consequence, from the vertex symmetry of the involved digraphs, we have:∑n
i=1

Ni
2 ≤ eccMn(0) ≤ eccMn−1(0) + Nn

2

since, in case (c), ‖un‖Nn ≤ Nn/2−1, and the same formula applies for the respective
diameters: ∑n

i=1
Ni
2 ≤ D(Mn) ≤ D(Mn−1) + Nn

2 .(3.6)

Theorem 3.8. The diameter of the n-dimensional Manhattan network Mn =
M(N1, . . . , Nn) is

(a) D(Mn) =
n∑

i=1

Ni

2
+ 1, if Ni ≡ 0 (mod 4) for any 1 ≤ i ≤ n;

(b) D(Mn) =
n∑

i=1

Ni

2
, otherwise.

Proof. Since Lemma 3.7 clearly applies for any two components of the vertex
(u1, u2, . . . , un), we can apply recursively the above results to get

D(Mn) ≤ D(M(Nj , Nk)) + 1
2

∑
i $=j,k Ni (1 ≤ j < k ≤ n).(3.7)

Then, under the hypothesis in (b), there is some 1 ≤ j ≤ n such that Nj ,≡ 0 (mod 4)
and D(M(Nj , Nk)) = Nj/2 + Nk/2 by Theorem 3.6. This, together with the lower
bound in (3.6), proves the equality in (a).

Otherwise, if Ni ≡ 0 (mod 4) for any 1 ≤ i ≤ n, Theorem 3.6 and (3.7) yield

D(Mn) ≤ 1
2

∑n
i=1 Ni + 1.(3.8)

Thus, to prove (a) we only need to show that equality is attained for some vertex. In
fact, the vertices at maximum distance to 0 are, in this case:

ui = (N1/2, N2/2, . . . , Ni/2− 1, . . . , Nn/2), (1 ≤ i ≤ n)

(compare with the 2-dim case (a), after the proof of Theorem 3.6). For instance, let
us check that dist(u1,0) attains the upper bound in (3.8). With this aim, note that
the first entry of u1, N1/2− 1, is odd, whereas the others, Ni/2, 2 ≤ i ≤ n, are even.
Moreover, for all 1 ≤ i ≤ n, we need at least Ni/2 steps to bring the i-th entry to
0, which gives dist(u1,0) ≥ ∑n

i=1 Ni/2. In particular, this requieres to change, in
some step, the first component from N1/2 − 1 to −N1/2 + 1 = N1/2 + 1, which is
acomplished when the number, say r, of previous steps going through j-arcs,

(u1, . . . , uj , . . . , un) → (−u1, . . . , uj + 1, . . . ,−un) (2 ≤ j ≤ n)

is odd. Then, although we have given r steps in the “right direction” to 0, there is
some j such that the first and j-th entries of the reached vertex u′, u′1 = N1/2 + 1
and u′j ∈ [Nj/2 + 1, Nj − 1], are odd. But now, as in case (3) in the proof of
Theorem 3.6, it is impossible to bring these components to 0 without spending at
least ‖u′1‖ + ‖u′j‖ + 2 steps (no matter what the other entries are). Hences, it must
be dist(u1,0) =

∑n
i=1 Ni/2 + 1 and this completes the proof.
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4. Hamiltonian Cycles. In this section we first show that the Manhattan net-
works are Hamiltonian digraphs. Moreover, in the 2-dim case, some necessary and
sufficient conditions for M2 to be decomposable into two (arc-disjoint) Hamiltonian
cycles are derived.

Theorem 4.1. The Manhattan network Mn is Hamiltonian.
Proof. We proceed by induction of n. For n = 1, M1 can be seen as a di-

rected cycle and hence it is trivially Hamiltonian. (We can also start from N = 2
since we already know that M2 is Hamiltonian by Lemma 2.3.) Now suppose that
there exists a Hamiltonian cycle for Mn−1. Then, we build a Hamiltonian cycle
for Mn by appropriately joining Nn Hamiltonian cycles (without some arcs) of its
Nn subdigraphs isomorphic to Mn−1 (remember Lemma 2.2(c)). More precisely,
the cycle begins, say, in (u1, u2, . . . , un−2, 0, 0) and goes from this vertex to the
vertices (u1, u2, . . . , un−2, 0, 1), . . . , (u1, u2, . . . , un−2, 0, Nn − 1). From this last ver-
tex, we follows a clockwise Hamiltonian cycle in a subdigraph Mn−1 (without the
last step) until vertex (u1, u2, . . . , un−2, Nn−1 − 1, Nn − 1). Then, we go to vertex
(u1, u2, . . . , un−2, Nn−1 − 1, Nn − 2) and, from it, we follows counterclockwise cycle
until (u1, u2, . . . , un−2, 1, Nn − 2). From here, we go to (u1, u2, . . . , un−2, 1, Nn − 3).
Now we repeat this patters several times until we reach the counterclockwise Hamilto-
nian cycle of a Mn−1 (without the last step), which finishes in (u1, u2, . . . , un−2, 0, 0)
and this closes the Hamiltonian cycle of Mn (see Figure 4.1).

M n-1 M n-1 M n-1 M n-1 M n-1 M n-1

( , ,..., ,0,0)u u u1 2 -2n

( , ,..., , -1,0)u u u N
1 2 -2 -1n n

( , ,..., , -1,1)u u u N
1 2 -2 -1n n

( , ,..., , -1,2)u u u N
1 2 -2 -1n n

( , ,..., , -1,3)u u u N
1 2 -2 -1n n

( , ,..., , -1, -2)u u u N N1 2 -2 -1n n n
( , ,..., , -1, -1)u u u N N1 2 -2 -1n n n

1 2 -2n
( , ,..., ,0,2)u u u1 2 -2n

( , ,..., ,0,3)u u u1 2 n-2
( , ,..., ,0, -2)u u u N

1 2 -2n n
( , ,..., ,0, -1)u u u N

1 2 -2n n

( , ,..., ,1,1)u u u1 2 -2n

( , ,..., ,0,1)u u u

( , ,..., ,1,2)u u u1 2 -2n
( , ,..., ,1,3)u u u1 2 -2n

( , ,..., ,1, -2)u��u������u N
1 2 -2n n

Fig. 4.1. A Hamiltonian cycle in Mn.

As an example of a Hamiltonian cycle in M(N1, N2), see Figure 4.2.

Fig. 4.2. A Hamiltonian cycle in M(8, 6).

Besides the Hamiltonian property, in some applications it is interesting to have
a decomposition of the network into (two or more) edge-disjoint Hamiltonia cycles.
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In this context, Varvarigos [22] showed the presence of two edge-disjoint Hamiltonian
cycles in the 2-dim Manhattan network M(N,N). Generalizing his result, we give
here some sufficient conditions for M(N1, N2) to be Hamiltonian decomposable in
such a way.

Proposition 4.2. Let M2 = M(N1, N2) be a 2-dim Manhattan network. If the
two following conditions hold:

(a) gcd{N1/2, N2/2} = d ≥ 2;
(b) There exist d1, d2 > 0, d1 + d2 = d, such that

gcd{d1, N1/2} = gcd{d2, N2/2} = 1;

then M2 contains two edge-disjoint Hamiltonian cycles.
Proof. By the results in [21] (see also [12]), the above conditions imply that the

cartesian product of the directed cycles CN1/2 × CN2/2 is Hamiltonian. Then, Fig.
4.3 illustrates the way how such a Hamiltonian cycle (with arcs going east and north)
induces a Hamiltonian cycle in M2. The key idea is that, before closing, this east-north
cycle changes its directions to go west and south. Then, at the end, it changes again
to connect with the first subpath and completing the Hamiltonian cycle in M2. With
respect to the other (edge-disjoint) cycle of M(N1, N2), it is simply the complement of
the first one. (Or, alternatively, it can be seen as a Hamiltonian cycle constructed in
the same way as the first one, but on the converse digraph of the Manhattan network
M(N2, N1); see again the figure for the details.)

Fig. 4.3. A decomposition of M(12, 8) into two edge-disjoint Hamiltonian cycles.
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