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Abstract

It has recently been shown that many networks associated with complex systems
are small-world (they have both a large local clustering and a small average distance
and diameter) and they are also scale-free (the degrees are distributed according to
a power-law). Moreover, these networks are very often hierarchical, as they describe
the modularity of the systems which are modeled. While most of the studies for
complex networks are based on stochastic methods, a deterministic approach, with
an exact determination of the main relevant parameters of the networks, has proven
useful to complement and enhance the probabilistic and simulation techniques and
therefore to provide a better understanding of the systems modeled.

In this paper we find the diameter, clustering and degree distribution of a generic
family of deterministic hierarchical small-world scale-free networks which has been
considered for modeling real life complex systems.
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1 Introduction

With the publication in 1998 and 1999 of papers by Watts and Strogatz on small-world

networks [21] and Barabási and Albert on scale-free networks [3], there has been a renewed

interest in the study of networks associated to complex systems which has received a

considerable boost as an interdisciplinary subject.

Many real life networks, transportation and communication systems (including the

power distribution and telephone networks), the Internet [10], the World Wide Web [2] ,

and several social and biological networks [11, 12, 14] , belong to a class of networks known

as small-world scale-free networks. All these networks exhibit both strong local clustering

(nodes have many mutual neighbors) and a small average distance and diameter. Another

important characteristic is that the number of links attached to the nodes usually obeys

a power-law distribution (it is scale-free). Several authors also noticed that the modular

structure of a system can be identified in the network as a specific clustering distribution

which depends on the degree. The network is then called hierarchical [18, 4, 22, 20].

Moreover, with the introduction of a new measuring technique for graphs it has been

discovered that many real networks can also be categorized as self-similar, see [19].

Along with these observational studies, researchers have developed different models [1,

9, 15], most of them stochastic, which should help to understand and predict the behavior
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and characteristics of the systems. However, new deterministic models constructed by

recursive methods, based on the existence of cliques, have also been introduced [6, 8, 13,

7, 23]. These deterministic models have the advantage that they allow one to compute

analytically relevant properties and parameters, which may be compared with data from

real and simulated networks. In [6], Barabási et al. introduced a simple hierarchical family

of deterministic networks and showed it had a small-world scale-free nature. However,

their clustering is zero, in contrast with many real networks which have a high clustering.

Another family of hierarchical networks is proposed in [18] to combine a modular structure

with a scale-free topology and to model the metabolic networks of living organisms and

networks associated with generic system-level cellular organizations. A simple variation

of this hierarchical network is considered in [17] , where the authors study other modular

networks as the WWW, the actor network, the Internet at the domain level, etc. The

model is further generalized in [16].

In this paper, we study a family of hierarchical networks recursively and determinis-

tically defined from an initial complete graph Kn. We find some of the main properties

for this family: diameter, degree distribution and clustering distribution.
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2 Hierarchical graphs Hn,k

Deterministic hierarchical graphs can be constructed from a complete graph Kn by con-

necting to a selected root vertex n−1 replicas of Kn. Next, n−1 replicas of the new whole

structure are added, again to the same root. At this step the graph will have n3 vertices.

The process continues until we reach the desired graph order. There are many variations

for these hierarchical graphs, depending on the order of initial graph, the introduction

of extra edges among the different copies of subgraphs, etc. However, given the starting

complete graph and the number of iterations they have no more parameters to adjust and

the main characteristics of the graph become fixed.

In this section we introduce a family of networks defined by parameters n (order of the

initial complete graph) and k (number of iterations) which generalizes the deterministic

hierarchical network introduced in [18], see also [5] (which corresponds to H4,k). The

deterministic hierarchicals networks introduced in [17] and generalized in [16], constitute

a subgraph of H5,k (some edges are not present). Our model enhances the modularity and

self-similarity of the network, and allows the exact determination of the diameter, degree

distribution and clustering distribution.
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2.1 Definition

A hierarchical graph Hn,k with defining parameter n and at level k is defined recursively

as follows (see Figure 1):

• Hn,1 is the complete graph Kn. One of its vertices is distinguished and called root.

All other vertices are called peripheral.

• For k > 1, Hn,k is obtained by adding some edges to the union of n disjoint copies

of Hn,k−1, denoted by H0
n,k−1, . . . , H

n−1
n,k−1.

• The edge set of Hn,k contains:

– the edges of each Hj
n,k−1;

– the edges connecting the root of H0
n,k−1 with every peripheral vertex of Hj

n,k−1,

for j = 1, . . . , n− 1; and

– all possible edges among the roots of Hj
n,k−1, for j = 1, . . . , n− 1.

• The root of Hn,k is the root of H0
n,k−1.

• The set of peripheral vertices of Hn,k is the union of the peripheral vertices of Hj
n,k−1,

for j = 0, . . . , n− 1.
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(a)

(b) (c)

Figure 1: Hierarchical graphs with initial order 4: (a) H4,1, (b) H4,2, (c) H4,3

It can be easily proved that the order and the size of Hn,k are |Vn,k| = nk and |En,k| =

3
2
nk+1 − 2nk − (n− 1)k+1 − n−2

2
.

2.2 Hierarchical properties

The hierarchical properties of these graphs can be summarized by the following two facts:

• For every i = 0, . . . , k, the graph Hn,k can be decomposed into nk−i subgraphs each

of them isomorphic to Hn,i.

• In Hn,k, by collapsing every subgraph isomorphic to Hn,i into a node, and all multiple

edges into one, we obtain a graph isomorphic to Hn,k−i.
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2.3 Labeling

With this definition, we can assign labels to the nodes of Hn,k, as follows:

• The vertices of Hn,1 are labeled 0, . . . , n− 1.

• A vertex labeled ω in Hj
n,k−1 is labeled j · ω in Hn,k.

Labeling the vertices in this way we have, for instance, that the root of Hn,k is labeled

00 . . . 0 (word of length k, all zeros), and the peripheral vertices of Hn,k are precisely those

vertices which have no zeros in their labels.

2.4 Diameter

Notation. Every vertex is identified with its label. Then, the vertex x of Hn,k is x = j ·x′

if x is the same vertex as x′ in Hj
n,k−1. In particular, that means that x′ has length k− 1.

Moreover, we use the following notation:

• dk denotes the distance in Hn,k,

• rj denotes the root of Hj
n,k−1,
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• P denotes the set of peripheral vertices of Hn,k, and

• Pj denotes the set of peripheral vertices of Hj
n,k−1.

Proposition 1 The diameter of Hn,k is 2k − 1.

The proof of this proposition uses the following three Lemmas.

Lemma 1 Let k > 1 and x, y be two arbitrary vertices in Hn,k. Then, we have one of

the following three cases:

1. There exists j, 0 ≤ j ≤ n, such that x = j · x′, y = j · y′, and dk(x, y) = dk−1(x
′, y′).

2. There exists j, 1 ≤ j ≤ n, such that x = 0 ·x′, y = j ·y′, and dk(x, y) = dk−1(x
′, r0)+

1 + dk−1(Pj, y
′).

3. There exist i, j, 1 ≤ i < j ≤ n, such that x = i · x′, y = j · y′, and dk(x, y) =

min{dk−1(x
′, Pi) + 2 + dk−1(Pj, y

′), dk−1(x
′, ri) + 1 + dk−1(rj, y

′)}.

Proof. By construction of Hn,k.
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Lemma 2 For all x in Hn,k:

dk(x, r0) ≤
{

k − 1 if x = 0 · x′

k otherwise
and dk(x, P ) ≤

{
k if x = 0 · x′

k − 1 otherwise.

Proof. By induction on k.

Case k = 1: If x = 0 = r0, then d1(x, r0) = 0 and d1(x, P ) = 1; otherwise, x ∈ P , then

d1(x, r0) = 1 and d1(x, P ) = 0.

Case k > 1: We only need to observe that, by construction of Hn,k,

dk(x, r0) =

{
dk−1(x

′, r0) if x = 0 · x′

dk−1(x
′, Pj) + 1 if x = j · x′, j 6= 0

and

dk(x, P ) =

{
dk−1(x

′, r0) + 1 if x = 0 · x′

dk−1(x
′, Pj) if x = j · x′, j 6= 0.

By the induction hypothesis, the Lemma holds.

In the next Lemma, 0101 . . . denotes the vertex with label ` = `1 . . . `k, where `i = i−1

(mod 2) and 1010 . . . denotes the vertex with label ` = `1 . . . `k, where `i = i (mod 2).

Lemma 3 dk(0101 . . . , r0) = k − 1, dk(0101 · · · , P ) = k, dk(1010 · · · , r0) = k, and

dk(1010 · · · , P ) = k − 1.

Proof. By induction on k.

Case k = 1: 0101 · · · = 0 and 1010 · · · = 1.
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Case k > 1: We only need to observe that 0101 · · · = 0 ·1010 · · · and 1010 . . . = 1 ·0101 · · ·.

This, and Lemma 1, imply that

• dk(0101 · · · , r0) = dk−1(1010 · · · , r0) = k − 1,

• dk(0101 · · · , P ) = dk−1(1010 · · · , r0) + 1 = k − 1 + 1 = k,

• dk(1010 · · · , r0) = dk−1(0101 · · · , P1) + 1 = k,

• dk(1010 · · · , P ) = dk−1(0101 · · · , P0) = k − 1.

Proof of Proposition 1. First we prove by induction on k that, for any given pair of

vertices of Hn,k, x and y, we have dk(x, y) ≤ 2k − 1.

Case k = 1: 2k − 1 = 1 and Hn,1 = Kn.

Case k > 1: We distinguish the three cases in Lemma 1.

1. There exists j, 0 ≤ j ≤ n, such that x = j · x′, y = j · y′, and dk(x, y) = dk−1(x
′, y′).

By the induction hypothesis, dk−1(x
′, y′) ≤ 2(k − 1)− 1 = 2k − 3 < 2k − 1.

2. There exists j, 1 ≤ j ≤ n, such that x = 0 ·x′, y = j ·y′, and dk(x, y) = dk−1(x
′, r0)+

1 + dk−1(Pj, y
′).

10



By Lemma 2, dk−1(x
′, r0) ≤ k − 1 and dk−1(Pj, y

′) ≤ k − 1. Then, dk(x, y) ≤

2(k − 1) + 1 = 2k − 1.

3. There exist i, j, 1 ≤ i < j ≤ n, such that x = i · x′, y = j · y′, and dk(x, y) =

min{dk−1(x
′, Pi) + 2 + dk−1(Pj, y

′), dk−1(x
′, ri) + 1 + dk−1(rj, y

′)}.

By Lemma 3, dk−1(x
′, ri) ≤ k − 1 and dk−1(rj, y

′) ≤ k − 1. Then, dk(x, y) ≤

2(k − 1) + 1 = 2k − 1.

Now, we have to prove that there exist two vertices in Hn,k at distance exactly 2k− 1.

Let x = 0101 · · · and y = 1010 · · ·. It follows by the Lemmas 1 and 3 that dk(x, y) = 2k−1.

That completes the proof.

Note that the diameter scales logarithmcally with the order N = |Vn,k| = nk, since

dk = 2
n−1

log N − 1.

3 Degree distribution and clustering distribution of

Hn,k

Proposition 2 The degree distribution of Hn,k is as follows: the root of Hn,k has degree

(n−1)k+1−(n−1)
n−2

, the (n − 1)ni−1 roots of Hj
n,k−i have degree (n−1)k−i+1−(n−1)

n−2
+ n − 2 (i =

1, 2, . . . , k − 1), the (n − 1)k peripheral vertices of Hn,k have degree n + k − 2, the (n −
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1)k−ini−1 peripheral vertices of Hj
n,k−i have degree n + k − i− 2 (i = 1, 2, . . . , k − 1).

Proof. The root of Hn,k has degree 1 + (n− 1) + (n− 1)2 + · · ·+ (n− 1)k = (n−1)k+1−1
n−2

.

Each Hj
n,k−i root has degree 1 + (n− 1) + (n− 1)2 + · · ·+ (n− 1)k−i = (n−1)k−i+1−1

n−2
, plus

n− 2 corresponding to the edges which join this root to the others at the same level. The

peripheral vertices of Hj
n,1 have degree n− 1. Those of Hj

n,2 have degree n. Similarly, the

peripheral vertices of Hj
n,k−i for i = 1, . . . , k− 2 have degree n + k− i− 2 (see Table 1).

The average degree is
2|En,k|
|Vn,k|

= 3nk+1−4nk−2(n−1)k+1−n+2
nk .

For large k, by looking at the degree distribution we see that the number of vertices

with a given degree z, Nn,k(z), decreases as a power of the degree z and therefore the

graph is scale-free [3, 9, 7]. As the degree distribution of the graph is discrete, to re-

late the exponent of this discrete degree distribution to the standard γ exponent of a

continuous degree distribution for random scale free networks we use a cumulative distri-

bution Pcum(z) ≡
∑

z′≥z
|Nn,k(z′)|
|Nn,k(z)| ∼ z1−γ, where z and z′ are points of the discrete degree

spectrum. When

z =
(n− 1)k−i+1 − n + 2

n− 2
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there are exactly (n− 1)ni−1 vertices with degree z. The number of vertices with this or

a higher degree is

(n− 1)ni−1 + · · ·+ (n− 1)n + (n− 1) + 1 = 1 + (n− 1)
i−1∑
j=0

nj = ni.

Then, we have

z1−γ = (
(n− 1)k−i+1 − n + 2

n− 2
)1−γ =

ni

nk
= ni−k.

Therefore, for large k,

((n− 1)k−i)1−γ ∼ ni−k

and

γ ∼ 1 +
log n

log(n− 1)
.

Table 1: Degree and clustering distribution for Hn,k

Identification Vertices Degree Clustering

Hn,k root 1 (n−1)k+1−(n−1)
n−2

(n−2)2

(n−1)k+1−2(n−1)+1

Hj
n,k−l roots (n− 1)nl−1 (n−1)k−i+1−n+2

n−2
(n−2)2

(n−1)k−l+1+(n−1)2−3(n−1)+1

j 6= 0, l =
1 . . . k − 1

Hn,k peripheral (n− 1)k n + k − 2 (n−1)2+(2k−3)(n−1)+2−2k
(n+k−2)(n+k−3)

H0
n,k−l periph-

eral
(n− 1)k−lnl−1 n + k − l − 2 (n−1)2+(2k−2l−3)(n−1)+2+2l−2k

(n+k−l−2)(n+k−l−3)

l = 1 . . . k − 1

Proposition 3 The clustering distribution of Hn,k is: the root of Hn,k has clustering

(n−2)2

(n−1)k+1−2n−+3
, the (n − 1)ni−1 roots of Hj

n,k−i have clustering (n−2)2

(n−1)nk−i+1+(n−1)2−3n+4
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(i = 1, 2, . . . , k − 2), the (n − 1)nk−2 roots of Hj
n,1 have clustering n−2

2n−3
, the (n − 1)k

peripheral vertices of Hn,k have clustering (n−1)2+(2k−3)(n−1)+2−2k
(n+k−2)(n+k−3)

, the (n − 1)k−ini−1 pe-

ripheral vertices of Hj
n,k−i have clustering (n−1)2+(2k−2i−3)(n−1)+2+2i−2k

(n+k−i−2)(n+k−i−3)
(i = 1, 2, . . . , k− 2)

and the (n− 1)nk−2 peripheral vertices of Hj
n,1 have clustering 1.

Proof. The root of Hn,k has clustering

(n−1)(n−2)
2

(1 + (n− 1) + (n− 1)2 + · · ·+ (n− 1)k−1)
1
2

(n−1)k+1−(n−1)
n−21

( (n−1)k+1−n+1
n−2

− 1)
=

(n− 2)2

(n− 1)k+1 − 2n + 3
.

The roots of Hj
n,k−i (i = 1, 2, . . . , k − 2) have clustering

(n−1)n)
2

(n−1)k−i

n−2
+ (n−2)(n−3)

2

1
2
( (n−1)k−i+1−n+1

n−2
+ n− 2)( (n−1)k−i+1−n+1

n−2
+ n− 3)

=
(n− 2)2

(n− 1)k−i+1 + (n− 1)2 − 3n + 4
.

The clustering of the peripheral vertices of Hj
n,k−i for i = 1, . . . , k − 1 is

(n−1)n−1
2

+ (n− 2)(k − i− 1)
1
2
(n + k − i− 2)(n + k − i− 3)

=
(n− 1)2 + (2k − 2i− 3)(n− 1) + 2 + 2i− 2k

(n + k − i− 2)(n + k − i− 3)
.

Note that for i = k− 1, the peripheral vertices of Hj
n,1 have clustering (n−1)2−n+1

(n−1)n
= 1 (see

Table 1).

It is easy to check that, for each degree, the clustering of the corresponding vertices

is inversely proportional to it. Then, the clustering of the graph is C(z) ∼ z−1. This is

considered a signature for scale-free networks with high modularity (hierarchical), see [5].
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4 Conclusion

In this paper we have provided a graph model which generalizes the hierarchical network

introduced in [18], which combines a modular structure with a scale-free topology in

order to model modular structures associated to living organisms, social organizations

and technical systems. We have calculated the diameter, the degree distribution and

the clustering of the graphs and we have seen that they are scale-free with a power law

exponent which depends on the initial complete graph, and that the clustering distribution

C(z) scales with the degree as z−1, as in many networks associated to real systems [17].
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